CD8+ lymphocyte-mediated injury of dorsal root ganglion neurons during lentivirus infection: CD154-dependent cell contact neurotoxicity.
نویسندگان
چکیده
Neuronal damage in dorsal root ganglia (DRGs) with accompanying axonal injury is a key feature of human immunodeficiency virus (HIV)-related distal sensory polyneuropathy (DSP). In a model of HIV-related DSP, we observed numerous CD3+ T lymphocytes (p < 0.05) in DRGs from feline immunodeficiency virus (FIV)-infected animals, which also exhibited low CD4+ and high CD8+ lymphocyte levels in blood accompanied by a selective loss of small-diameter sural nerve axons (p < 0.05). FIV-infected lymphocytes cocultured with syngeneic DRGs caused neuronal damage, indicated by neurite retraction, neuronal soma atrophy, and loss (p < 0.05). In contrast, supernatants from FIV-infected or uninfected lymphocytes were minimally neurotoxic, despite high FIV virion levels. Among lymphocyte subsets cocultured with DRG cultures, CD8+ T cells from both FIV-infected and uninfected lymphocytes selectively caused DRG neuronal injury (p < 0.05). FIV-infected CD8+ T cells showed markedly increased CD154 expression (p < 0.05), whereas neurons were the predominant cells expressing CD40 in DRGs. Blocking CD154 on activated CD8+ T cells protected DRG neurons (p < 0.05). These findings indicated that CD8+ T cells were principal effectors of DRG neuronal injury after FIV infection through a CD40-CD154 interaction in a cell contact-dependent manner.
منابع مشابه
Morphological Identification of Cell Death in Dorsal Root Ganglion Neurons Following Peripheral Nerve injury and repair in adult rat
Background: Axotomy causes sensory neuronal loss. Reconnection of proximal and distal nerve ends by surgical repair improves neuronal survival. It is important to know the morphology of primary sensory neurons after the surgical repair of their peripheral processes. Methods: Animals (male Wistar rats) were exposed to models of sciatic nerve transection, direct epineurial suture repair of sciati...
متن کاملAdrenomedullin protects rat dorsal root ganglion neurons against doxorubicin-induced toxicity by ameliorating oxidative stress
Objective(s): Despite effective anticancer effects, the use of doxorubicin (DOX) is hindered due to its cardio and neurotoxicity. The neuroprotective effect of adrenomedullin (AM) was shown in several studies. The present study aimed to evaluate the possible protective effects of AM against DOX-induced toxicity in dorsal root ganglia (DRGs) neurons. M...
متن کاملThe Neuroprotective Effect of Nepeta menthoides on Axotomized Dorsal Root Ganglion Sensory Neurons in Neonate Rats
Background and Objective: Sensory neurons have critical role in improvement of functional outcome of any neuroprotective strategy. The herbal medicine Nepeta menthoides has been reported to have anti-apoptotic effect on axotomized spinal motoneurons. In the present study, the putative neuroprotective effect of Nepeta menthoides on the axotomized dorsal root ganglion sensory neurons in neonate r...
متن کاملDirect neurotoxicity of tetracaine on growth cones and neurites of growing neurons in vitro.
BACKGROUND Local anesthetics have direct neurotoxicity on neurons. However, precise morphologic changes induced by the direct application of local anesthetics to neurons have not yet been fully understood. Also, despite the fact that local anesthetics are sometimes applied to the sites where peripheral nerves may be regenerating after injury, the effects of local anesthetics on growing or regen...
متن کاملGrowth cones of chick sympathetic preganglionic neurons in vitro interact with other neurons in a cell-specific manner.
The ability of the growth cones of sympathetic preganglionic neurons to recognize the neurons they encounter during their outgrowth and to react to them in a cell-type-specific manner may play a role in guiding them to appropriate targets during development in vivo. In this study, we examined the in vitro growth of sympathetic preganglionic neurons as they interacted with motor neurons, dorsal ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 26 13 شماره
صفحات -
تاریخ انتشار 2006